Maxima and Minima

How can the owner of a snowboard rental business use mathematics to maximize sales or minimize cost? What dimensions of a rectangular field provide the greatest area? Questions like these are answered by finding the maximum or minimum point of a quadratic relation, which occurs at the vertex.

If a relation is of the form \(y = a(x - h)^2 + k \), then the vertex is \((h, k)\). However, if a relation is of the form \(y = ax^2 + bx + c \), the coordinates of the vertex are not so obvious. In this section, you will learn how to express \(y = ax^2 + bx + c \) in the form \(y = a(x - h)^2 + k \).

Investigate

How can you model the process of creating a perfect square?

1. Consider the quadratic expression \(x^2 + 6x + 9 \).
 a) Show that the expression is a perfect square using algebra tiles.
 b) Factor the expression as a perfect square.

2. Repeat step 1 using the quadratic expression \(x^2 + 4x + 4 \).

3. Consider the quadratic expression \(x^2 + 6x + 5 \).
 a) Describe how algebra tiles have been used to create a perfect square using the first two terms.
 b) Explain how the relation \(y = x^2 + 6x + 5 \) relates to \(y = (x + 3)^2 - 4 \).
 c) Use a graphing calculator to compare the graphs of \(y = x^2 + 6x + 5 \) and \(y = (x + 3)^2 - 4 \).
4. Consider the quadratic expression $x^2 + 4x + 3$.

 a) As in step 3, use algebra tiles or a diagram to create a perfect square using the first two terms.

 b) Explain how the relation $y = x^2 + 4x + 3$ relates to $y = (x + 2)^2 - 1$.

 c) Use a graphing calculator to compare the graphs of $y = x^2 + 4x + 3$ and $y = (x + 2)^2 - 1$.

5. Reflect Illustrate and explain how to use algebra tiles to rewrite the quadratic relation $y = x^2 + 2x + 7$ in the form $y = (x - h)^2 + k$.

The process of completing the square involves changing the first two terms of a quadratic relation of the form $y = ax^2 + bx + c$ into a perfect square while maintaining the balance of the original relation.

Example 1 Complete the Square

a) Rewrite $y = x^2 + 8x + 5$ in the form $y = a(x - h)^2 + k$.

b) Write the coordinates of the vertex of the parabola.

c) Sketch a graph of the relation. Label the vertex, the axis of symmetry, and two other points.

Solution

a) **Method 1: Use Algebra Tiles**

Create a perfect square using the first two terms in the quadratic expression $x^2 + 8x + 5$.

Arrange one x^2-tile and eight x-tiles so that the side lengths are equal. Place the five unit tiles to the side.

To complete the perfect square, you need to add 16 unit tiles. In order to preserve the original quadratic expression, you must also add 16 negative unit tiles.
Complete the square and collect the unit tiles.
Remove zero pairs.

\[x^2 + 8x + 5 = (x + 4)^2 - 11 \]

The relation \(y = x^2 + 8x + 5 \) in the form \(y = a(x - h)^2 + k \) is \(y = (x + 4)^2 - 11 \).

Method 2: Use Algebraic Symbols
Rewrite the relation in the form \(y = a(x - h)^2 + k \) by completing the square.

\[
\begin{align*}
y &= x^2 + 8x + 5 \\
&= (x^2 + 8x) + 5 \\
&= (x^2 + 8x + 4^2 - 4^2) + 5 \\
&= (x + 4)^2 - 16 + 5 \\
&= (x + 4)^2 - 11 \\
\end{align*}
\]

The relation \(y = x^2 + 8x + 5 \) in the form \(y = a(x - h)^2 + k \) is \(y = (x + 4)^2 - 11 \).

b) The vertex is \((h, k)\), or \((-4, -11)\).

c) The equation of the axis of symmetry is \(x = -4 \).

To find another point on the graph, let \(x \) take any value.

Let \(x = 0 \),
\[
y = 0^2 + 8(0) + 5 = 5
\]
Therefore, \((0, 5)\) is a point on the parabola.

Due to symmetry, another point is the *partner* to this, \((-8, 5)\).

Plot the three points and complete the sketch.
Example 2 Find a Maximum or a Minimum

Find the maximum or minimum point of the parabola with equation \(y = 2x^2 + 12x + 11 \).

Solution

Method 1: Complete the Square

When the coefficient of the \(x^2 \)-term is not 1, the first step is to factor the coefficient of \(x^2 \) from the first two terms. Then, complete the square within the brackets.

\[
y = 2x^2 + 12x + 11 \\
= 2(x^2 + 6x) + 11 \\
= 2(x^2 + 6x + 3^2 - 3^2) + 11 \\
= 2(x + 3)^2 - 18 + 11 \\
= 2(x + 3)^2 - 7
\]

The equation \(y = 2(x + 3)^2 - 7 \) is of the form \(y = a(x - h)^2 + k \). The vertex is \((-3, -7)\). It is a minimum point, since \(a \) is positive.

Method 2: Use a Graphing Calculator

Enter the equation using \(y = \) .

Press \([\text{ZOOM}] \) and select \(6: \text{ZStandard} \).

You can see that the parabola has a minimum. This is because the coefficient of \(x^2 \) is positive.

Use the Minimum operation of a graphing calculator to find the coordinates of the vertex.

- Press \([\text{CALC}] \) to display the \(\text{CALCULATE} \) menu, and select \(3: \text{minimum} \).
- Move the cursor to the left of the vertex and press \(\text{ENTER} \).
- Move the cursor to the right of the vertex and press \(\text{ENTER} \).
- Move the cursor close to the vertex and press \(\text{ENTER} \).

The calculator will give you the approximate ordered pair that best represents the minimum point of the graph.

The minimum point is \((-3, -7)\).
Example 3 Path of a Ball

The path of a ball is modelled by the equation $y = -x^2 + 2x + 3$, where x is the horizontal distance, in metres, from a fence and y is the height, in metres, above the ground.

a) What is the maximum height of the ball, and at what horizontal distance does it occur?

b) Sketch a graph to represent the path of the ball.

Solution

a) $y = -x^2 + 2x + 3$

Factor -1 from the first two terms.

To complete the square inside the brackets, add the square of half of -2, or $(-1)^2$. Subtract the same value to balance the equation.

$y = -1(x^2 - 2x) + 3$

$y = -1(x^2 - 2x + (-1)^2) - (-1)(-1)^2 + 3$

$y = -1(x - 1)^2 + 1 + 3$

$y = -(x - 1)^2 + 4$

The equation $y = -(x - 1)^2 + 4$ is of the form $y = a(x - h)^2 + k$. The vertex is $(1, 4)$. It is a maximum point since a is negative.

The maximum height of the ball is 4 m after it has been thrown a horizontal distance of 1 m.

b) The vertex is $(1, 4)$.
When $x = 0$, $y = 3$.
By symmetry, the partner point to $(0, 3)$ is $(2, 3)$.

I can use these three points to graph the path of the ball. The parabola will not go below the x-axis because the height of the ball is always positive.
Example 4 Maximize Revenue

Alex runs a snowboard rental business that charges $12 per snowboard and averages 36 rentals per day. She discovers that for each $0.50 decrease in price, her business rents out two additional snowboards per day. At what price can Alex maximize her revenue?

Solution

Let R represent the total revenue, in dollars.
Let x represent the number of $0.50 decreases in price.

Then, the price, in dollars, can be calculated as $12 - 0.5x$ and the number of rentals can be calculated as $36 + 2x$.

Revenue is the product of the price and the number rented.

$$R = (12 - 0.5x)(36 + 2x)$$

To find the maximum revenue, expand the quadratic relation, and then complete the square.

$$R = (12 - 0.5x)(36 + 2x)$$
$$= 432 + 6x - x^2$$
$$= -x^2 + 6x + 432$$
$$= -1(x^2 - 6x) + 432$$
$$= -1(x^2 - 6x + (-3)^2) + 432$$
$$= -1(x - 3)^2 + 9 + 432$$
$$= -(x - 3)^2 + 441$$

The relation reaches a maximum value of 441 when $x = 3$.

There should be three price reductions of $0.50 to maximize the revenue.

$$12 - 0.5(3) = 10.50$$

A price of $10.50 maximizes Alex’s revenue.

Key Concepts

- You can rewrite a quadratic relation of the form $y = ax^2 + bx + c$ in the form $y = a(x - h)^2 + k$ by completing the square.

- For a quadratic relation in the form $y = a(x - h)^2 + k$, the vertex, (h, k), represents the maximum or minimum point of the parabola. The vertex is a minimum point when $a > 0$ and a maximum point when $a < 0$.

- Completing the square allows you to find the maximum or minimum point of a quadratic relation of the form $y = ax^2 + bx + c$ algebraically.

- You can use a graphing calculator to find the maximum or minimum point by using the Maximum or Minimum operation on the graph of the quadratic relation.
Communicate Your Understanding

Describe the steps needed to complete the square for each relation.

a) \(y = x^2 + 10x + 15 \)

b) \(y = -2x^2 - 4x - 5 \)

Identify the vertex of each relation in question C1. How do you know whether it is a maximum or a minimum point?

Explain how to graph an equation of the form \(y = a(x - h)^2 + k \).

Practise

For help with questions 1 to 6, see Example 1.

1. Use algebra tiles to rewrite each relation in the form \(y = a(x - h)^2 + k \) by completing the square.
 a) \(y = x^2 + 2x + 5 \)
 b) \(y = x^2 + 4x + 7 \)
 c) \(y = x^2 + 6x + 3 \)

2. Determine the value of \(c \) that makes each expression a perfect square.
 a) \(x^2 + 6x + c \)
 b) \(x^2 + 14x + c \)
 c) \(x^2 - 12x + c \)
 d) \(x^2 - 10x + c \)
 e) \(x^2 + 2x + c \)
 f) \(x^2 - 80x + c \)

3. Rewrite each relation in the form \(y = a(x - h)^2 + k \) by completing the square.
 a) \(y = x^2 + 6x - 1 \)
 b) \(y = x^2 + 2x + 7 \)
 c) \(y = x^2 + 10x + 20 \)
 d) \(y = x^2 + 2x - 1 \)
 e) \(y = x^2 - 6x - 4 \)
 f) \(y = x^2 - 8x - 2 \)
 g) \(y = x^2 - 12x + 8 \)

4. Find the vertex of each quadratic relation by completing the square.
 a) \(y = x^2 + 6x + 2 \)
 b) \(y = x^2 + 12x + 30 \)
 c) \(y = x^2 - 8x + 13 \)
 d) \(y = x^2 - 6x + 17 \)

5. Match each graph with the appropriate equation.

6. Find the vertex of each parabola. Sketch the graph, labelling the vertex, the axis of symmetry, and two other points.
 a) \(y = x^2 + 10x + 20 \)
 b) \(y = x^2 - 16x + 60 \)

For help with questions 7 to 9, see Example 2.

7. Rewrite each relation in the form \(y = a(x - h)^2 + k \) by completing the square.
 a) \(y = -x^2 + 80x - 100 \)
 b) \(y = -x^2 - 6x + 4 \)
 c) \(y = 3x^2 + 90x + 50 \)
 d) \(y = 2x^2 - 16x + 15 \)
 e) \(y = -7x^2 + 14x - 3 \)
8. Find the maximum or minimum point of each parabola by completing the square.
 a) \(y = -x^2 - 10x - 9 \)
 b) \(y = -x^2 + 14x - 50 \)
 c) \(y = 2x^2 + 120x + 75 \)
 d) \(y = 3x^2 - 24x + 10 \)
 e) \(y = -5x^2 - 200x - 120 \)

9. **Use Technology** Use a graphing calculator to find the maximum or minimum point of each parabola, rounded to the nearest tenth.
 a) \(y = x^2 + 6x - 1 \)
 b) \(y = 0.2x^2 - 1.5x + 6.3 \)
 c) \(y = -1.6x^2 + 4.3x - 5.2 \)
 d) \(y = \frac{1}{2}x^2 - \frac{1}{8}x + \frac{1}{2} \)
 e) \(y = -57x^2 + 91x - 13 \)
 f) \(y = 144x^2 + 25x + 14 \)

For help with questions 10 and 11, see Example 3.

10. Find the vertex of each parabola. Sketch the graph, and label the vertex and two other points.
 a) \(y = -x^2 - 2x - 6 \)
 b) \(y = 4x^2 + 24x + 41 \)
 c) \(y = 5x^2 - 30x + 41 \)
 d) \(y = -3x^2 + 12x - 13 \)
 e) \(y = 2x^2 + 8x + 3 \)

11. Find the vertex of each parabola. Sketch the graph, and label the vertex and two other points.
 a) \(y = -2x^2 - 3x + 7 \)
 b) \(y = 3x^2 - 9x + 11 \)
 c) \(y = -x^2 + 8x - 10 \)
 d) \(y = 4x^2 - 16x + 11 \)
 e) \(y = -5x^2 - 30x - 48 \)

Connect and Apply

12. The path of a ball is modelled by the equation \(y = -x^2 + 4x + 1 \), where \(x \) is the horizontal distance, in metres, travelled and \(y \) is the height, in metres, of the ball above the ground. What is the maximum height of the ball, and at what horizontal distance does it occur?

13. **Use Technology** A football is kicked at an angle of 30° to the ground, at an initial speed of 20 m/s, from a height of 1 m. Two quadratic relations can be used to model the height, in metres, above the ground:

 With respect to time, \(t \), in seconds, the height is given by \(h = -4.9t^2 + 10t + 1 \).

 With respect to the horizontal distance, \(x \), in metres, the height is given by \(h = -0.0163x^2 + 0.5774x + 1 \).

 Use a graphing calculator to verify that the maximum height is the same with both models.

 At what time and horizontal distance does the maximum height occur?

Did You Know?

Galileo was a mathematics professor at the University of Pisa, in Italy. At the beginning of the 17th century, he discovered the connection between quadratic equations and acceleration.

14. A diver dives from the 3-m board at a swimming pool. Her height, \(y \), in metres, above the water in terms of her horizontal distance, \(x \), in metres, from the end of the board is given by \(y = -x^2 + 2x + 3 \). What is the diver's maximum height?

15. The cost, in dollars, of operating a machine per day is given by the formula \(C = 2t^2 - 84t + 1025 \), where \(t \) is the time, in hours, the machine operates. What is the minimum cost of running the machine? For how many hours must the machine run to reach this minimum cost?
For help with question 16, see Example 4.

16. An artisan can sell 120 garden ornaments per week at $4 per ornament. For each $0.50 decrease in price, he can sell 20 more ornaments.

 a) Determine algebraic expressions for the price of a garden ornament and the number of ornaments sold.

 b) Write an equation for the revenue using your expressions from part a).

 c) Use your equation from part b) to find what price the artisan should charge to maximize revenue.

 d) Use Technology Graph both forms of the relation from parts b) and c) to verify that they are equivalent.

17. Find the maximum or minimum point of each parabola by completing the square.

 a) \(y = 1.5x^2 + 6x - 7 \)

 b) \(y = -0.1x^2 - 2x + 1 \)

 c) \(y = 0.3x^2 + 3x \)

 d) \(y = -1.25x^2 + 5x \)

 e) \(y = 0.5x^2 - 6x + 12 \)

 f) \(y = -0.02x^2 - 0.6x - 9 \)

18. Chapter Problem A manufacturer decides to build a half-pipe with a parabolic cross section modelled by the relation \(y = 0.2x^2 - 1.6x + 4.2 \), where \(x \) is the horizontal distance, in metres, from the platform, and \(y \) is the height, in metres, above the ground.

 Complete the square to find the depth of the half-pipe.

19. Find the two missing values \((b, c, \text{and/or } h)\) in each equation.

 a) \(x^2 + 8x + c = (x + h)^2 \)

 b) \(x^2 + bx + 36 = (x + h)^2 \)

 c) \(x^2 + bx + c = (x - 5)^2 + 2 \)

20. The drag on a small aircraft is made up of induced drag from the wings as they produce lift and parasitic drag from the airframe. Over a limited speed range, the drag, \(d \), in newtons, produced by a speed, \(v \), in kilometres per hour, can be modelled by the quadratic relation \(d = 0.15v^2 - 9v + 195 \). Determine the speed that results in minimum drag.

21. Fred fires a toy spring from the top of a metre stick toward a cardboard box 4 m away and 1 m tall. The spring follows a path modelled by the relation \(y = -x^2 + 10x - 21 \). The ceiling of the room is 3.5 m above the point at which the spring is launched. Can the spring hit the box without hitting the ceiling first?

22. Use Technology Studies show that employees on an assembly line become more efficient as their level of training goes up. In one company, the number of products, \(P \), produced per day, at a level of training of \(t \) hours, follows the quadratic model \(P = -0.375t^2 + 10.25t - 8 \), for \(0 \leq t \leq 18 \). Use a graphing calculator to determine what level of training will give the maximum productivity, rounded to the nearest tenth.
23. A pipe cleaner is 20 cm long. It is bent into a rectangle. Use a quadratic model to determine the dimensions that give the maximum area.

24. A field is bounded on one side by a river. The field is to be enclosed on three sides by a fence, to create a rectangular enclosure. The total length of fence to be used is 200 m. Use a quadratic model to determine the dimensions of the enclosure of maximum area.

Extend

25. Use Technology A projectile is propelled upward at various angles from the ground (known as angles of elevation), with initial velocity of 10 m/s. Use graphing technology to compare the maximum heights of the projectiles with the angles of elevation shown in the table.

<table>
<thead>
<tr>
<th>Angle of Elevation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°</td>
<td>(h = -4.9t^2 + 3.42t)</td>
</tr>
<tr>
<td>30°</td>
<td>(h = -4.9t^2 + 5.00t)</td>
</tr>
<tr>
<td>40°</td>
<td>(h = -4.9t^2 + 6.43t)</td>
</tr>
<tr>
<td>50°</td>
<td>(h = -4.9t^2 + 7.66t)</td>
</tr>
<tr>
<td>60°</td>
<td>(h = -4.9t^2 + 8.66t)</td>
</tr>
<tr>
<td>70°</td>
<td>(h = -4.9t^2 + 9.40t)</td>
</tr>
</tbody>
</table>

26. A parabola has a y-intercept of 5 and contains the points \((2, -3)\) and \((-1, 12)\). What are the coordinates of the vertex?

27. Verify that the x-coordinate of the vertex of a parabola of the form \(y = ax^2 + bx + c \) is \(\frac{b}{2a} \).

28. Math Contest The maximum area for an equilateral triangle inscribed in a circle of radius \(R \) is \(\frac{3\sqrt{3}}{4} R^2 \). Determine the side length of the triangle.

29. Math Contest Two names from four friends, Jane, Farhad, Sonia, and Mehta, are drawn from a hat for two tickets to a concert. What is the probability that Jane and Farhad go to the concert together?

A \(\frac{2}{3} \) B \(\frac{1}{2} \)
C \(\frac{1}{4} \) D \(\frac{1}{6} \)
E \(\frac{1}{12} \)

30. Math Contest In 1920, the young nephew of American mathematician Edward Kasner coined the word googol to mean a really big number.

1 googol = \(10^{100} \)
1000\(^{100} \) is equivalent to

A 1000 googols B 3000 googols C 30 googols D googol\(^{30} \) E googol\(^{googol} \)

Did You Know?

The founders of the Internet search engine Google intended to use googol as their name. However, investors misspelled the name on a cheque.